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ABSTRACT 

We present the matrix elements squared for all (2 + 2) and (2 -+ 3) 

parton scattering subprocesses calculated at 0(cus3). The matrix ele- 

ments are presented in n dimensions to regulate singularities due to the 

emission of soft or collinear radiation. We use these results to discuss 

one hadron inclusive scattering, considering only a limited number of 

parton subprocesses. A preliminary analysis is made of the implications 

of our results for gluon gluon scattering in the absence of quarks. 
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The calculation of the strong radiative corrections to the parton parton scat- 

tering processes responsible for two jet structure in hadron hadron collisions was 

begun several years ago. Two groups (Ellis, Furman, Haber and Hinchliffe[‘l and 

Slomiriski and Furmr&kil*~sl) independently calculated the gluonic radiative cor- 

rections to the scattering of two non-identical quarks in order O(asS). Using these 

results it was found that the inclusion of the O(ass) terms substantially modified 

the naive estimate for the one particle inclusive cross-section in the kinematic region 

where the quark-quark scattering diagram dominates. 

These papers have two shortcomings, which have become more troubling in the 

period since their publication. Six years ago the highest energy experiments on 

hadron hadron scattering were conducted at the ISR. At those energies the one 

particle inclusive cross-sections are dominated at large transverse momentum by 

quark-quark scattering because of the stiffness of the valence quark distributions in 

the protons. It was in this experimental scenario that the calculations of refs.[l - 31 

were meant to be applied. At the energies of the present pp colliders gluons inside 

hadrons cannot be neglected except at the very largest values of pT. Indeed at super- 

collider energies gluons will play a preeminent roleI’]. It is therefore a matter of 

some urgency to calculate the complete O(os3) cross-section for all possible parton 

parton interactions. This is the subject of this paper. 

Specifically, we present results for the invariant matrix elements squared of the 

following parton sub-processes in O(as3). 

ta) Qj + Qk -+ !lj + Qk j#k 

(b) qj + qj + qj + qj 

tc) qj + qj + 9 + 9 

(4 9+9+9+g 

and 
(Al % + qk + qi + qk + g j#k 

W 4j + qj + Qj + Qj + 9 

(Cl qj+&+‘9+9+9 

P) 9+9-+9+9+9 

All other matrix elements for parton parton scattering processes in O(as3) can be 
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obtained from the above by time reversal and crossing. The results are given for 

massless quarks and in n dimensions in order to regulate divergences. 

Because the Feynman graph calculations which we have performed are com- 

plicated, we have chosen to present the full answers for all the matrix elements 

squared. We have taken pains also to provide sufficient detail of the methods and 

conventions which we adopted, so that the results which we present may be used 

as the input for further studies. 

The second shortcoming of refs.[l - 31 is that the calculations are performed 

for one particle inclusive cross-sections whereas the cross-sections of most current 

interest are calorimetric jet cross-sections defined in terms of the energy deposited 

inside a given solid angle. Such jet cross-sections are sensitive both experimentally 

and theoretically to the method of definition of the jet. Theoretically the sensitivity 

to the jet definition is present only after the inclusion of the radiative corrections 

calculated in this paper. The QCD corrections to jet cross-sections have only been 

considered for the case of distinguishable quark#l. We hope to give a complete 

discussion of jet cross-sections including all parton subprocesses in a future paper. 

The plan of this paper is ss follows. In section 2 we calculate all the (2 + 2) 

scattering cross-sections in n dimensions including the virtual corrections, giving 

full details of our method of calculation. In section 3 we present results for all the 

(2 -+ 3) scattering cross-sections in n dimensions. Section 4 discusses one hadron 

inclusive scattering, which is the theoretically simplest physical application of our 

results. We make a comparison with previous work on this process and make a 

preliminary analysis of the corrections to one particle inclusive scattering in a pure 

gluon theory. 
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II. The (2 -+ 2) Subprocesses. 

As a first step in calculation of the higher order corrections we shall consider the 

effects of virtual radiation on the two-to-two partonic scattering subprocesses. In 

evaluating these corrections we will encounter ultraviolet, collinear and infra-red di- 

vergences, which we regulate by analytic continuation to n space-time dimensions161. 

In this regularisation scheme the divergences appear as poles in the parameter s 

where n = 4 - 2s. We note in passing that these poles will cancel only when the 

(2 + 2) and (2 -+ 3) processes are combined to form physical quantities. 

The basic processes which we have to consider are, 

(0) 4%’ + qk + Qj i- qk j # k 

@I Qj + 43 + qj + Pj 

Cc) qj + qj + 9 + 9 

(4 9+9+9+9 

(2.1) 

Quarks are everywhere taken to be massless, so our calculations are appropriate 

for a region far from mass thresholds. We quote the results for these processes 

in terms of the invariant matrix elements squared and summed over both initial 

and final colours and spins. In this form the crossing properties,necessary for the 

derivation of all other (2 -+ 2) matrix elements, are manifest. The cross-sections are 

derived from these squared matrix elements by averaging over the initial colours and 

spins and including the appropriate phase space factors. The full 2 + 2 differential 

cross-section is then given by, 

do = (2=)2e d”-‘p3 d”-‘p, z p4* +ypl + p2 _ p3 _ Pr) 
32r2spX pi (2-2) 

where z denotes the averaging over the initial colours and spins, and summing over 

the final colours and spins. By convention we spin average by dividing by 2 for each 

quark in the initial state and by 2(1- s) f or each gluon in the initial state. Further 

justification for this choice will be given in Section (IV). 

The invariant matrix elements squared for the processes of Eq.(2.1), summed 
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and averaged over colours and spins, define four functions a, b, e, and d as follows, 

Cl kfqjqk j qjqkl” = & [a(s,t,u)] 

El ivfqjqj -‘gjgj~‘=~[a(s,t,u)+a(s,u,t)+b(s,t,u)] 

z:I M@j + gg/* = & [c(s,~,u)] 
(2.3) 

21 Mgg -+ gg12 = 4(1 -1E)2v2 [d(s, 6 u)] 

where 

5 = (Pl + P2j2, t = (Pl -PSI*, u = (P2 - P2j2 (2.4) 

The matrix elements squared for all two-to-two processes can be obtained from the 

functions a, b, c and d as shown in Table 1. Throughout this paper we employ the 

notation that N = 3 is the number of colours and V is the dimensionality of the 

vector representation of the SU(N) group (V = N* - 1). 

The functions a, b, c and d have perturbative expansions which we write ss, 

a(s,t,u) -+ g’ (/.qW(s,t,u) +g6 (g%(y9,t,u) + O(gS) 

b(s,t,u) -+ g* (#b(‘)(s,t,u) + g6 (p)srb(B)(s,t,u) + O(g”) 
(2.5) 

c(s,t,u) -+ g* (p)W)(s,t,u) +g6 (p)“J6)(s,t,u) + o(g) 

d(s, t, u) -+ g’ (p)“d(‘)(s, t, u) + g* (p)%@)(s, t, u) + O(g”) 

at’), b(‘),c(‘) and d(‘) have been calculated in 4 dimensions in ref. [7]. Since we are 

using dimensional regularisation we need the n dimensional forms for these func- 

tions. The relevant Feynman diagrams are shown in Fig. 1 and the n dimensional 

results are presented in Table 2. We note that the n dimensional results for b(‘) and 

dt’l are in disagreement with the results of ref.[8]. All results are in agreement with 

ref.[‘l] in the limit s -+ 0. 
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Radiative COrreCtiOnS to Qj + qk -+ qj + qk. 

We now turn to the calculation of the first radiative correction to the elastic 

scattering of distinguishable quarks. The relevant Feynman amplitudes are shown 

in Fig. la and Fig. 2. The correction we seek comes from the the interference of the 

single tree diagram of Fig. la with the five one-loop ‘master’ diagrams of Fig. 2. 

This particular calculation is the simplest of the various matrix elements which 

we must calculate and the results have already been presented in elsewhereiiJ1. 

However the number of graphs involved in the calculation of the radiative correc- 

tions for all two-to-twoprocesses requires that the problem be reformulated in such 

a way that it may be efficiently handled by the algebraic manipulation program 

SchoonschiplQl. We therefore describe the case of quark-quark scattering in some 

detail as an illustration of our calculational techniques. 

Consider first the master diagrams shown in Fig. 2. In this figure solid lines 

represent quarks, curly lines represent gluons, ghosts, or anti-ghosts and dashed 

lines represent gluons, ghosts, anti-ghosts, quarks, or anti-quarks. An implicit sum 

over the various allowed partons is assumed for each type of line. Thus, for example, 

master diagram 1 of Fig. 2 represents five distinct Feynman diagrams each with the 

same basic topology. These five diagrams are shown in Fig. 3 and correspond, in 

turn, to a gluon flowing round the loop, a ghost flowing in either of two directions 

around the loop, or a quark flowing in either of two directions around the loop. The 

program generates these five diagrams from the master diagram by allowing every 

dashed lime to run over all five possibilities and eliminating those diagrams which fail 

to satisfy the conservation of ghost number or of fermion number at every vertex. 

Once the diagrams have been generated it is straightforward to include the minus 

sign for any ghost or fermion loops which are present and to insert the Feynman 

rules for the various vertices and propagators. 

Note that the above procedure automatically generates the correct statistical 

weight for the gluon diagrams relative to the ghost and quark diagram#‘l. The two 

directions of ghost and quark loops lead to identical expressions and are therefore 

not normally considered as separate graphs. It follows that a single quark or ghost 

diagram enters with a weight of two relative to the gluon loop diagram. After 

multiplying by an overall factor of i we get the normal statistical factor for the 
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gluon self-energy. By working through a few examples it can be seen that this 

method of inclusion of statistical factors works for all diagrams. 

The above discussion of the diagrams of Fig. 2 explains the significance of the 

dashed and curly lines. This notation is used throughout this paper. However the 

basic quantities which we use to calculate the radiative corrections to parton parton 

scattering are not the amplitudes themselves but rather the cut graphs generated 

by the interferences of the Born amplitude with the radiatively corrected amplitude. 

Interfering the diagram of Fig. la with the five master diagrams of Fig. 2 we obtain 

only four distinct topologies of cut diagrams. These topologies are shown in Fig. 4. 

The reduction in the number of diagrams as we pass from the amplitudes of Fig. 2 

to these cut diagrams occurs because the interferences of diagrams 2 and 3 with 

the Born term of Fig. la generate cut diagrams with exactly the same topology 

(topology 2 of Fig. 4). This simplification is exploited wherever possible in the 

following calculations. 

At this point we have reduced the problem of calculating the radiative corrections 

to that of evaluating the four cut topologies shown in Fig. 4. We denote the result 

of the ifh topology by I’!‘)(pi, pz, p3, ~4). The arguments of the function I’!“’ are the 

momenta crossing the cut in Fig. 4 (or equivalently the external momenta in the 

amplitudes of Figs la and 2). 

In terms of these topologies the full result for the correction may be written as, 

gs(/.payS,t,U) = 

2 1 i ~~‘I)(P~~P~,P~,P~) + ~P(P~,P~,P~,P,) +r~)(Pz,PlrP,,P3) (2.6) 

+rPh,Pz,P3rP4) + rf)(Pl,h,P3,P,) I 
The overall factor of two in this equation comes from the squaring of the amplitude. 

The factor of i which multiplies I??) is the normal statistical factor associated 

with the gluon self-energy. Such factors will always be written explicitly. Eq.(2.6) 

contains in all five terms corresponding to the five distinct interferences. 

All five interferences can be obtained from the four cut diagrams by performing 

the momentum interchanges (~1 t-t pg) and (pa CI p,). Topologies 1,3 and 4 are 

unchanged by this permutation. The action of the permutation on Topology 2 is to 

generate the second interference (see Eq.(2.6)). 
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To implement this procedure in a more formal way we define a function F(O) 

which is obtained from the four topologies of Fig. 4 by summing over the results 

of the topologies I’i, weighted with the statistical factors Si, and multiplied by the 

weight factor Wi which takes into account the number of interferences obtained from 

a given topology by permutation of the external momenta. 

@)(P~,P~,P~,P~) = 2 C si(~)w,!")rlo)(pl,pz,p3,p1) 
i=l,l 

(2.7) 

The statistical and weight factors for distinguishable quark-quark scattering can be 

read off from Eq.(2.6) or Table 3. The sixth order result for u(s) is finally obtained 

by appropriate symmetrisation in the external momenta. 

96b4L~(6vJJ,4 = ; [F("VPl,P2,P3,P4) + F(')(p*,p1,p*,p3)] (2.8) 

We are now in a position to write down the final result for the matrix element, 

squared and summed over initial and final spins and colours, up to and including 

O(gs). We find, 

a(s,t,u) = 

!lw) (P)‘Q) (8,t,u){l+~(~)~r(1r;I)f2~:)-L) 
v 4 

1 ( 
- --- 
2N ~1 f (6 +81(s) - 82(u) - 41(t))) + ; (41(s) - 21(u) - 21(t)) 

+& (-16 - 212(t) + I(t) (6 + 81(s) -81(u)) 

(2rr + (I(t) - I(s))2 + (1(t) - I(u))2) 

+ TR (; (l(t) -+/l*)) - ;)]I + O(E) 

(2.9) 
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Eq.(2.9) introduces several new notations which we now define. The colour structure 

is 6xed in terms of the quantities, 

V = N2 - 1, N = 3, TR = nt 
2 

and g(nr) is the coupling constant renormalised at scale n2 in the MS scheme[“1. 

nf is the number of quark flavours. The running coupling constant as = g2/4n 

satisfies the equation, 

2d 
’ dp= 

--as=-as[bo(~)+bl(~)P+O(as3)] (2.10) 

where[i2J31, 
11N 2Ta 

bo=8-3, 
17N2 ~NTR VTR 

b1=6---- 3 2N 
(2.11) 

The asymptotic behaviour can hence be written as, 

QS (P2) 
T=~& 

1-y*4G) +. 
bi In ($) (2.12) 

In Rxed order perturbation theory the coupling constant has the perturbative ex- 

pansion, 

g’(d) = g’(Q2) (1 - 2b0g In (5) + O(K~~)) (2.13) 

Finally, the notation Z(z) denotes the logarithm, 

t(x) = In -5 ( ) 
If z is greater than zero I(s) has an imaginary part since Q2 > 0. In Eq.(2.9) and 

following equations it is understood that only the real part is kept. Explicitly we 

write, 

Z’(x) + 12 2 x>o 

(2.14) Z’(x) + In2 --?I- 
( 1 82 

x<o 

I(x) -+ In 
x 

(I I) 91 
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These assignments should be made after crossing to the appropriate region. Q2 is 

an arbitrary momentum scale. It will often be most convenient to make the choice 

Q2 = s but we have left it arbitrary to make the behaviour under crossing manifest. 

We note that the result presented here is in agreement with the results of refs. [l, 21. 

Radiative Corrections to QjQj + QjQj. 

If the scattered quarks are identical, there are ten interferences between the 

diagrams of Fig. lb and Fig. 2. which generate new topologies not included in 

Fig. 4. These additional topologies of cut diagrams are shown in Fig. 5. The 

statistical factors and weights for these diagrams are given in Table 4. All of the 

interferences are generated by making the weighted sum over the topologies of Fig. 5. 

F(*)(P~,P~,P~,P~) = 2 C s,!b)W,!b)rjb)(p1,p2,p3,p1) 
i=l.l 

(2.15) 

As before the final answer for identical quark-quark scattering is obtained by 

symmetrising in the external momenta to recover all the diagrams. 

(2.16) 

The result for the additional contribution to identical quark scattering matrix ele- 
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ment is, 

b(s,t,u) =g4(~z)(~)‘rb(‘)(8,t,~)(l+%(~)~r(1~(:)f2~~)6’ 

-$ - f (6 +41(s) - 41(t) - 41(u)) 

-z- g(t) + z(u))* + 2I(s)(l(t) +I@)) +2@(t) + l(u)) - ;*q 

f (21(s) -I(t) - I(u)) + ; + ;(l(t) + Z(U))~ 

-4(t)Z(u) - 21(s)(l(t) + l(u)) - i@(t) + l(u)) + in2 + +LJ2)] 

+ TR [-z + i (l(t) + I(U) - 21(-p’))] 

+ $ [ (2 + (I(t) - l(u))*) $ + $(t) + 2(u)])} + O(c) 

(2.17) 
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Radiative Corrections to qjqj + g + g. 

The three diagrams of Fig. lc interfered with the radiatively corrected diagrams 

of Fig. 6 lead to 42 interference terms. These interferences are fully described by 

the 21 topologies shown in Fig. 7. It is in this sector of the calculation that the 

power of our method asserts itself, since it automatically deals with the problem of 

summing over gluon polarisations in a non-abelian theory. The non-conservation 

of the gluon current in QCD means that one cannot simply replace the sum over 

polarisations by, 

gdarz*,on, GdP)C(P) = -SW, (2.18) 

If we wish to use Eq. (2.18) to sum over polarisations we must also include ghost 

contributions (even on external lines) to cancel the unwanted longitudinal polarisa- 

tions. This is automatically taken care of in Fig. 7, since the curly lines represent 

either gluons or ghosts/anti-ghosts (if the latter possibility is allowed by ghost num- 

ber conservation). Thus several diagrams are compactly represented in terms of one 

topology. The weighted (but unsymettrised) sum over topologies is given by, 

~%~2d’3rP~) = 2 c S,!e)Wi(c)r!c)(PlIP2,P3rP1) 
i=1,21 

(2.19) 

where S/‘) and Wp) are given in Table 7. The final answer for quark anti-quark an- 

nihilation is obtained by symmetrisation over external momenta in order to recover 

all the diagrams, 

g6(p)%f6) tS,hu) = ; [F(e)(pl,p2,P3,P4) +~(“)(p,,P2rP4,P3)] (2.20) 
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The result is, 

- 7) + N (-$ - E + J&(-p’)) + TR (i - $~(-p2))]) 

(2.21) 

where f’ is given by 

f”(s,t,~)=4NV(‘(‘;~) (g) 

+12(s) -2-f 
( 4N3 tu 

+& 5+ 
( 

l f$2y)-;(!y)) 

+l(s)((i;-A-$)-(N+$)($$&(y)) 

+~2(~+~(““b,t”“+~)+N(~-~)) 

+(N+$) (i-v) 

+l’(t)(N(;+;)+;(&;)+$(;-;)) 

+l(s)l(t)(N(ff$;)+$(;-;)+$(;-;))I 

'~ (2.22) 
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Radiative Corrections to g + g --t g + g. 

The four diagrams of Fig. Id interfered with the radiative correction diagrams 

of Fig. 8 (including the diagrams obtained by interchange of the legs) yield 108 

combinations. These interferences can all be obtained from the 18 topologies shown 

in Fig. 8. Here again the curly line represents gluons or ghosts/anti-ghosts. Thus a 

single topology in Fig. 8 may represent many diagrams corresponding to the different 

ways of looping gluons, ghosts or fermions through the diagram. The weighted sum 

over topologies is 

F(d’(P1,P*rP3rPd) = 2 c S,!d)Wi(d)r!d)(PltPZ,P3,P1) 
i=l,lS 

(2.23) 

where the weights and statistical factor are given in Table 6. The final answer is 

given by the permutation over all momenta to generate all the interferences. 

[F(d)(PlrP1rP3>P,)] (2.24) 

We find, 

d(%t,u) = g’(P2)(P)“( d(‘)(s,t,u) 

+ g4VN2 (fd(s,t,u) + f”(t, w.4 + Id(W))} + O(E) 

(2.25) 



-14- FERMILAB-Pub-85/152-T 

where fd is given by, 

+ ( it” _ 2(t2+u2) 
3 52 3 tu -,,-,(~+~)),,,,-,-,I 

+ TR K 
10 (t* + U’) 
3 tu 

(2.26) 

Finally we note that the poles present in Eqs.(2.9,2.17,2.21,2.25) are a conse- 

quence of the singularities due to the emission of soft and collinear radiation. Also 

note that aa expected the terms containing the soft singularity have the same kine- 

matic structure a~ the lowest order matrix element. 
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III.The 2 -+ 3 parton subprocesses. 

In order to regulate the singularities which are present due to soft or collinear 

emission of partons, we need the matrix element squared for the 2 + 3 parton 

processes in 11 dimensions. In four dimensions, these subprocesses were first calcu- 

lated by Gottschalk and Sivers and by Kunszt and Pietarinenl’“]. More recently, 

extremely compact and elegant forms for the four dimensional results for these pro- 

cesses have been given by Berends et all1sl. In our calculation we followed closely 

the procedure of ref.[l4], (which is extremely similar to the method used for the 

virtual diagrams described in the previous section). We have checked that our for- 

mula reduce to the formula of ref.1151 in the limit n + 4. Although we are in 

agreement with their basic approach, we have not checked the long answer in the 

first of refs.[l4] in every detail. 

We calculate the amplitudes for the processes, 

(4 qj + qk + qj + qk + 9 j#k 

W 4j + 4; + qj + qj + 9 

(Cl qj+%+g++++ 

@‘I 9+9’9+9+9 

(3.1) 

We present results for the matrix elements squared for. these four basic processes 

summed over colours and spins (but, as before, without averaging over initial colours 

or spins). We calculate these amplitudes in an unphysical configuration in which 

all momenta are incoming, 

Pl + P2 + P3 + Pa + P5 = 0 (3.2) 

All other amplitudes are obtained from those of Eq.(3.1) by crossing as detailed in 

Table.7. 

We define the following notation to assist in writing down a compact form for 

the answers, 

vl = P2 - II2 
N ’ 

v2 = P2 - 1) 
N ’ 

v3 = N’ - 1 
2N2 ’ 

v, = (N2 - II2 
2Nr ’ 
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In addition we define the variables 

3 = 2Pl.P2, 8’ = 2P3.P*, s* = (s f s’) /2 

t = 2Pl.p~ t’ = 2Pz.P*, t* = (t f t’) /2 (3.3) 

u = 2Pl.P4, 72 = 2P2 .P3, u* = (u f u’) /2 

The definition oft, t’, u and u’ given in Eq.(3.3) is the one appropriate for the con- 

figuration in which all momenta are incoming. After continuation to the physical 

region of process A, these definitions of s, t and u coincide with the normal defini- 

tions given in Eq.(2.4). The result for process A in the unphysical region (Eq.(3.2)) 

is, 

A(P~,P~,P~,P~,P~) = 

s”(p)“‘{vl(s: + 2 + u: + uf) 

[0.5u+(.sS + tt’ - uu’) + 0.25u(st + A’) + 0.25u’(st’ + s’t)] 

- v+: + sl + u: + Ul)[O.58+(8S’ - tt’ - UU’) + u+tt’ + t+uu’] 

+ ~V1[(U+(SZ + lb’ + 0.5tg + 0.25t+(1 - 2e)(sZ - tt - ul))(s! + tf - UT) 

- 8-Lu-(2.31 + 2uf + t:, - tEs-u-(l- Zs)] 
(3.4) 

+ Ev2[-0.5t:(S+(S1 - tl - UT) + 2u+tl + 2t+UZ) 

+ 0.25t+(l- 2e)(sf + t’ + ui - 2&l - 2slu2 - 2tlul) 

- s+(sl_ - u’_) - 2t+u’ + (s+ - 2u+)tl(s1 + UZ) - 2t+&‘]} 

/tlt’lPl.P5lP2.P5/P3.P6lP*.P6 

The matrix elements squared for the physical processes can be obtained from the 

function A as shown in Table.7. 
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The corresponding result for the case of identical quarks (process B) is given by, 

B(P~,Pz>P~>P~>P~) = -~(P~,Pz,P~,P,,Ps) +--$h,Pz,P',P3,P3) 

+g6(/.p{(ss' - tt’ - uu')(s2 + s’*)v3 

[0.25s+(ss’ - tt’ - au’) + 0.5u+tt’ + 0.5t+uu’] 

+(ss’ - tt’ - uu’)(s2 + d2)V* 

[0.25s+(ss’ - tt’ - au’) - 0.5u+tt’ - 0.5t+uu’ - 0.25s(tu + t’u’) - 0.25s’(tu’ + ut’)] 

--E(SS’ - tt’ - UU’) 

[-0.25(5 + 4(V3 + V,)s+(s! -t! - ~1)~ 

+ {(0.5(1 + E)(l - 2<)(v, + V4) - 0.5(5 + C)(v, - v,))(t!.U+ + dt,) 

- (1 - 4% + v’)s+(C + UT) - O.S(V3 + v’)s+(t: + u: + tZ_ + 2) 

- (5 + c)V*s-t-u-)(2 - tZ -UT) 

- 2V&Lu-{(t: + u: + tl + ul) 

+ 2(1 - s)(tl + u!) + (1 + c)(l - 2t)t+u+} 

+ (1 + s)(vs + v’)s+tt’uU 
- (v, - V,)(tlu+ + ult+)(t: + u: + tZ + 72.) 
- 2(1 - C)(v, - V,)(t!U+ + U?t+)(t! + UT) + (1 + C)(l - %)(v, - v,)s+ttU!] 

+s(1 + e)tt’uu’ 
[2V3(s+t+u+ + t+ul + u+tl) + 2v (s t u * + + + - t+ua - u+ty + 8~v’s~tLu-]} 

lP1.PslP2.PslP3.P6/P*.P6/tltrl~I~’ 

(3.5) 
The result for the process C is symmetric under the interchange of the three gluons 

and under the interchange of the quark and anti-quark. It can therefore be written 

as the sum of 12 permutations corresponding to these symmetries. 

C(Pl,P2,P3,P’rPS) = Lf(# c FC(L2,3,4,5) (34 
12 permutotion~ 
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where FC is given by, 

FC(1,2,3,4,5) = $(-N2(1 - ~)~(a+b+ - a-b-)/p,.p, 

[‘k: + a~)1~1.~4~~2~P4/Pl.P3/~2.~3 + (c: + c~)lp~.p3/p2.p3/pl.p’IpZ.p’] 

+N*(l - ~)(a+b+ - a-b-)/p,.pz/p,.p5/p3.p5 

W2, + b?)InmIPm + (C: - c~)IP1.P’IP2.P’IP1.P3~p2.p3] 

+(N2 + 1)0.25pl.p2[2(1 - c)“(c: + CT) -6&t + a: + b: + b: - c: - cf) 

- 26& - CT) - 63(a2+ - a2 + 6: - 6: -C: + c~)]~~l~P3/P2~P3/~l~P4~~2~P4 

+N2(-~(1 + 3c)(a: -a: + b: -a!) 

(Pl~P3Pl~P’PI~PS - ~2~~~2~~~~2-~6)~~5~-)~~3.~~~~l~~3/~2.~3~~,.~~f~~.~~~~l.~3/~2.~3 

+2N26da+b+ - a-b-)lp,.p~lp2.P5lP3.P* 
+N2{0.5(61- 26, + 63)(a+ + b+ - ~+)(a+ + b+ + c+) 

((a+ + b+)(a+ + b+ - c+) - a+b+ -3a-be) + 263a+b+(a: + b:) 

+ (263 - 662)a_b-(a: + b:) + (63 - 463)a+b+c! 

+ 63~b-(a! + 6:) + (262 - 63)c+(a+b’! + db,) 

+ (662 - 363b-b-(a+ + b+)c+ + (663 - 862)a+b+a-b-)/p3.p*lpl.p~lp2.p31pl.p41p2.p4 

+N*{-263(a+b+ - a-b-)~: - 63(~+ + b+)3c+a+b+ 

+ 262(a+b+ - a-b-)c:c! + 63(a+b+ + a-b-)(13+ + b+)c: 

+ 63(a+b- + a-b+)+ - 62a+b+(a; - a! + bt - b!)c$ 

f46 ( 2 0: - a’-)@: - b!)c: + 263(a+b+ + a-b-)(a+b+ - a-b-)c: 

+ 63c+(a+ + b+)(a+b+ -a-b-)2 

- 263(a+b+ - a-b-)(a+b- + a-b+)c+c- - 62(a+b+ + a-b-)(a+ + b+)c+a-b- 

- 62(a+b- + a-b+)a+b+c+c- + 63a+b+(a+ + b+)c+ct 

- 263(a: - a! + 6: - b!)a+b+a-b_ + 26*(a+b+ - ILb-)(af + b:)($ + 6:) 

- 263(a+b+ - a-b-)(a; + b:)’ +6aa:(b: -b!) 

+ 6&z: - a!.) + 62a+b+at(~: -a!) + 63a+b+b:(b: -b!) 

+ 0.5(&f 63)(a+b+ - a-be)[a$ + b: + c: - 2a:b: - 2~5: - 2btc:j 

- 63(a+b+ - ~~-b-)[a:aZ_ + b:bt + c:c!] 

+ &(a+b+ - a-b-)[a;bt + a’-b: + a:,: + a!,; + b:c: + btc:]} 

(3.7) 
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To simplify the formula we have defined, 

61 = e(1 - s)*, 62 = ~(1 -E), 63 = ~(3 + c), (3.8) 

and, 

=+ = (P1.P3 + Pz.P3)/2, =- = (Pl.P3 - PZ.P3)/2, 

b+ = (~1.~4 + PZ.P,)/% b- = (~1.~4 - P~.P,)/% (3.9) 

c+ = (Pl.PS + PZ.PS)l% c- = (Pl.PS - PZ.P5)/2, 

The quantities 61,62 and 63 vanish in the limit n + 4. In this limit it is only the first 

six lines of Eq.(3.7) which contribute to C in agreement with the results of ref.[l5]. 

The result for the base function D which describes the five gluon transition 

probability is most conveniently written by introducing the compact notation for 

the dot-product 

Pi.Pj = (ii) (3.10) 

The function D is a completely symmetric function of the momenta of the five 

gluons. It can be expressed ss the sum over all 5 factorial permutations of the 

arguments of the function FD, 

D(pl~p2,p3,p’,p5) = !?(/d& & c FD(L2,3,%5) 
grrmutotionr 

(3.11) 

where 

FD(1’2’3’4’5) = (12)(23;;$45)(51) 

[(l;42 { (12)’ + (13)*+ (14)’ + (15)*+ (23)’ 

+(24)* + (25)’ + (34)’ + (35)’ + (45)‘) 

- 363 { (12)2(23)2 + (23)‘(34)’ + (34)‘(45)’ + (45)2(51)2 + (51)2(12)*} (3.12) 

+ 663 { (12)(23)2(34) + (23)(34)2(45) + (34)(45)2(51) 

+(45)(51)2(12) + (51)(12)‘(23)} 

- 663{(12)(23)(34)(45) + (23)(34)(45)(51) + (34)(45)(51)(12) 

+(45)(51)(12)(23) + (51)(12)(23)(34)}] 
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Because of the great symmetry we have obtained an extremely compact form for 

this matrix element squared even in n dimensions. Notice that the last three terms 

are proportional to 63 which vanishes in both four and ten dimensions. We find 

that the results for the matrix element squared D in four and ten dimensions are 

proportional. We have no explanation for this simplicity. 
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IV. One particle inclusive cross-sections. 

In this section we apply our results to the calculation of physical cross-sections. 

The particular process we choose to study is one particle inclusive hadron scattering. 

From a theoretical standpoint this is the simplest physical quantity which we can 

calculate. It also allows us to make contact with earlier work and provides a partial 

check of our results. As a further motivation we note that in ref.[5] the inclusive 

parton cross-section was used as a preliminary step in the calculation of jet cross- 

sections. 

In QCD the inclusive cross-section for the production of a hadron He at large 

transverse momentum PT, 

Hl(Pl) + Hz(P2) --t H3(P3) + x 

may be written in the factorised form, 

E3 $$ =,$+w+ 

(4.1) 

1 (4.2) 

The sum on i,i, k runs over all species of partons. The short distance cross-section 

b is evaluated at resealed values of the hadronic momenta. 

$1 = di, B2 = z2p2, $3 = P3/23. 

c? is calculable as a perturbation series in the running coupling constant ar(p2). F 

and D are the non-perturbative distribution and decay functions. These functions 

must be determined from experiment but their dependence of the scale Jo is given 

by the evolution equations. 

‘2&2 ’ -!+(qp2) = +c / dzdy PfS’(t)FjR(y,/i2)6(z - YZ) 

1 

$&D”(z,‘?) = ~~jd~dyD;(y,p~)Pj~~(r)6(z-ya) 
i 

In these equations P(S*T) are the space-like and time-like evolution probabilities. 
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They have perturbative expansions, the first two terms of which are given in refs.[l6] 

and [17 - 191 respectively. 

The quantity of particular interest to us is the short distance cross-section b. 

To calculate b we need first to calculate the full one parton inclusive cross-section 

o. At order as3 the cross-section u has two contributions : the first from the 

radiatively corrected (2 + 2) parton processes calculated in Section (II) and the 

second from the tree level (2 -t 3) parton processes calculated in Section (III). (r 

is calculated from these results by adding the appropriate phase space factors in 

n dimensions and integrating over the unobserved degrees of freedom. For details 

of this procedure we refer the reader to the discussion of ref.[l]. 

When the contributions of the (2 --) 2) and (2 + 3) scattering processes are com- 

bined to form cr only the soft singularities present in the individual terms cancel. 

However the factorisation theorem120~211 assures us that all the remaining singu- 

larities may be factored into process-independent functions T associated with the 

incoming and outgoing parton legs. Thus, for the one parton inclusive cross-section 

in n dimensions, we may write, 

where the short distance cross-section B is evaluated at resealed values of the parton- 

momenta, 

81 = ZlPl, 62 = Z2P2, fi3 = P3/23. (4.5) 

To first order in us the singular parts of the functions T(s~rl are equal and given 

by the Altarelli-Parisi functions. At this order we may define the functions T(S,Tl 

to be, 

I$(z,c) = 6ii,6(l-z) - ~Pw(z)(~ + ln(4r) - 7s) (431 

The singularities from the collinear emission of partons appear ss poles in c. The 

association of the ln(4r) and Euler constant with the pole in c defines this to be 

the MS type of mass singularity factorisation. Unless otherwise stated this is the 

factorisation used everywhere in this section. 
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As indicated in the previous sections, the parton cross-sections o are calculated 

by averaging over n - 2 spin states of initial gluons. This is to be constrasted with 

refs.[l - 31 where averages were performed over 2 spin states of initial gluons. The 

results of refs.[l - 31 therefore differ in a simple, calculable way from the results of 

the present paper i. In the notation of this paper it corresponds to performing the 

spin averages ss we do here but making the replacement in Eq.(4.4), (for the case 

of incoming gluons, denoted by g.) 

I+)( ) JS z,e &) - [6,d(l- z) - ffpjfl(z)(i + ln(4n) - 7~) + O(Us’)] (4.7) 

Eq.(4.7) makes it clear that this replacement corresponds to a different factorisa- 

tion prescription. Of course, physical results must be independent of the choice 

of factorisation scheme. Such a modification of the singular function F at order 

QS, leads to a modification of the two loop Altsrelli-Parisi function in such a way 

that physical results are independent of the choice of factorisation scheme. The 

choice made in Eq.(4.6) is in accord with the normal choice made for the two-loop 

anomalous dimensions,(see for example ref.[l7]). 

In ref.[I] the factorisation scheme was modified so that direct comparison could 

be made with parton distribution and decay functions taken respectively from deep 

inelastic scattering and deep inelastic e+e- annihilation. By using the distribution 

and decay functions measured in these processes at the appropriate scale p2, this 

factorisation scheme leads directly to physical predictions for one hadron inclusive 

scattering. The particular modifications of eq.(4.4) used in ref.[l] were, 

rg’(z,4 = r$(z,g + $,(z, + O(as2) 

r:+, 4 = r::)hd + f$(=) + o(d) 
rg)(Z, 4 = r;:+, 4 + Edqq(zj + o(d) (4.8) 

‘This issue has been discussed in ref.1221. 
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The finite O(cxs) corrections are given by111~23~2’l, 

~~*(~)=~((l+.l,['"~~~']+-~[~]+-(~~~'ln(~) 

+3 + 2r - (; + $1 - 2) 
) 

(4.9) 

4,(z) = $ ((1 + 4 [‘nFIi’]i - i [+-I+ + 2”,‘;” In(z) 

+%(1- %) + (T - p - 4) 

(4 IO) 

In ref.[I] various simple forms for fgp were investigated. In this paper we will set 

f,, = 0. We shall refer to this type of factorisation ss the ‘physical scheme’. 

To analyse the inclusive hadronic cross-section numerically it is useful to intro 

duce the dimensionless functions pR, j, @r and 4. 

d30R 
E3- = 

1 
d3P3 iqp 

“(rF,r;,A2/S) = $ c$“(r~,r,“,A”/P;) 

.od3&;;, 1 
P37g = -& i+l,~2,PZl~l = $ 4(%r%IL21P;). 

We have introduced the resealed hadronic and partonic variables 

(4.11) 

Pl.P3 rp = -, p2-4 

Pl.P2 
r2H = -, 

PI.4 

such that, 

Pi = rpr;s, p; = i,qs. 

(4.12) 

(4.13) 

The dependence of the function p” on the variable S, (or of the function @’ on 

PT), at fixed rp,rF provides a measure of the departure from strictly point-like 

behaviour. From Eq.(4.2) it follows that the observed hadronic px is predicted in 

terms of the short distance >, 

p”(r~,r;,A2/S) = ~/‘dxldx2dxsdildi2 ~1x22: 6(r; - ilx2xJ) 
i,j,L 0 

W - f2xlx3) [~p’(z3>c12) {~!j(il~i2r~2/s)} ~~~a(~2,~2)~~‘(21,~2)] 

(4.14) 
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A similar formula relates $H and 4. In the order of perturbation theory to which 

we are working j has the following structure, 

+,,,q = (~)2(Po(i1)6(1-il-q) 
a.9 (/J2) +0(1-ii-q) - 

( I[ 2n 
91(+1,4) +&(ii,ir)ln $ ( II 

and 4 is given by, 

J+‘“‘$) = (~)‘(~,(P,)6(1-?-h) 

ffs (P2) 
+S(l-?1-?2) --j-g-- 

( H 

2 

&(il,i2) +&(tl,f2)ln E ( )I, P$ 

(4.15) 

(4.16) 

where, 

?Jo(%) = /i,(h) 

&(hi2) = i&(91,4) +&(%,+2)ln(il+2) (4.17) 

g&+2) = li:(fl,f2) 

Note that the physical cross-section is independent of the renormalisation point 

p2-& pR(r~,~~,A2/S) = 0 

Thus inserting the form of Eq.(4.15) into Eq.(4.14) and using Eq.(2.10), we find 

that & is completely determined by renormalisation group arguments. 

(4.19) 

where 
L L * 6 
a= I-il' y=l--q, .z3 = il + ;2 (4.20) 

Following ref.[2,3] we may define moments of the hadronic and partonic cross- 

sections. 

f(n, m) = J,l dr1 l1 dr2 r;+rz”-‘f(r1, ~‘2) 



-20- FERMILAB-Pub-85/152-T 

F(n) = i’dx x”-‘F(x) 

Because of the simple structure of the s dependence in Eqs.(4.15,4.16) we find, after 

taking moments at 6xed S or at fixed PT, that the factorisation of the long and 

short distance parts of becomes manifest. 

Thus by considering the moments of 5 and 3 we can obtain information about 

the O((rs3) corrections, almost without reference to the form of the distribution 

functions. 

Taking moments of Eq.(4.15) we find, 

(4.23) 

The only dependence on the form of the distribution and decay functions enters 

through 2 which is defined as, 

qn, m, p) = s exp 
I 

(4.24) 

The function j: describes the effective parton sub-energy for the process ae a function 

of the hadronic energy, S = (PI + P2)’ and the moment number. 

Similarly Eq.(4.16) implies, 

4 
(4.25) 



-27- FERMILAB-Pub-851152-T 

where pr is given by, 

i%(~ m, IL) = Pi exp (4.26) 

Eqs.(4.23) and (4.25) are well suited for the simple numerical estimates which we 

wish to perform in this section. If the short distance cross-section is dominated by 

one parton subprocess the analysis of the size of the correction can be performed 

without introducing particular forms for the distribution or decay functions. The 
^ 

corrections to a(n, n) and d(n, m) can then be used to give an estimate of the size 

of correction to the hadronic cross-section. 

The results given in Sections II and III put a complete analysis of the O(as3) 

results for one particle inclusive cross-sections including all parton subprocesses 

within our grasp. As indicated in the introduction we find this of limited exper- 

imental interest and we choose not to do it at the present time. We will instead 

consider only the three short distance cross-sections derived from the following par- 

ton subprocesses. 

(1) t?j + 9k + Qj + X j#k 

(2) qj + qh + g +X j # k (4.28) 

(3) 9+g-+g+x 

We consider processes (1) and (2) b ecause analytic results for them have already 

appeared in the literature. Process (3) is included because, in an imaginary world 

in which there are no quarks, it can be analysed on its own. 

Firstly we consider the comparison with the work of other authors. Explicit 

analytic results for the short-distance cross-sections & for process (1) have been 

presented in refs.[l - 31. We are in agreement with these analytic results of these 

references, after taking into account the modifications of the factorisation prescrip- 

tion described above 2. However we are not in agreement with the analytic results 

for process (2) given in ref.[25]. The formulae for the short distance cross-sections 

for processes (2) and (3) are of about the same length as the formula given for 

process (1) in refs.[l - 31. We choose not to present them. 

2We believe that the entry for &so and D,cc in the apppendix of ref.[J] contains LI misprint and 
should read Drsc = &co = ,a($~ - 2Cr). 
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In order to examine the size of the corrections we define the quantities, 

r(n,m) = P~~‘~~, t(n,m) = +[i:ii, t’(n,m) = +-[I::; (4.29) 

These quantities express the size of the higher order corrections relative to the 

lowest order corrections in units of az/(27r). 

We consider first process (1). In Table. 8 we display the values of the ratios for 

the diagonal moments n = m. Note that for the ‘natural’ scale p* = i(n, m,p) the 

higher order corrections are large and positive. For any given moment it is always 

possible to choose a scale such that the higher order corrections vanish. For each 

moment we define the ratios r,+(n, m) and r),(n, m) 

rl,(m,n) = ‘* 
%m,d 

t)t(m,n) = ‘* 
% (n, m, 1.4 

The values of the ratios which we must choose to ensure the vanishing of the higher 

order corrections are shown in Table 8. 

Introducing the physical factorisation scheme of Eqs(4.8) makes the modifica- 

tions 

r -+ rc, t + P. (4.31) 

In the physical scheme the size of the corrections is substantially reduced. Table 

8 also shows the value of $ which leads to the vanishing of the higher corrections 

in the physical scheme. This value is approximately equal to $ for all the diagonal 

moments listed. Identifying j%r with the whole transverse energy of a jet ET suggests 

that jet cross-sections can be well described by setting the effective scale @ = Es/4 

and including only the lowest order cross-section. This approach has often been used 

in practical calculations, for lack of more reliable information. Whether in fact this 

a correct inference from information on one particle inclusive cross-sections and 

whether this pattern is maintained for all parton subprocesses will have to await 

further investigation. In the meantime we point out that neither the information 

on the angular distribution which we present below nor the earlier work on jet 

cross-section@1 support this approximation. 

In order to get a feeling for the significance of the double moments, it is useful 

to perform a change of variables. In terms of the variables z = 2E3/dS and the 
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centre of msss scattering angle (z = dos BcM), we have, 

H- 1-Z 1+z 
Tl --z - , ( > H- 

2 
rz --z - 

( > 2 

The moments of @’ may be written,(l = n + m), 

q@(n,m,$) =~ldzzL-l/_:d* (~)“-l(~)“-lmH(,~,~~,~) 

(4.33) 
At fixed transverse momentum the integer L corresponds to variations in the beam 

energy, whereas t = (m - tz)(rr + m) d escribes the angular dependence of 4”. 
Figs.(lO),(ll) and (12) show the angular dependence of the correction as a function 

of Z. We see that t(n, m) shows apppreciable dependence on t which is not present in 

ti(n, m). Thus it is not possible to define a universal r) which removes the correction 

for all angles. This is shown in Fig.(l2). At fixed L the value of qt varies as function 

of Z. Of course in a real physical situation we might expect to find partons of a given 

type inside both beam and target hadrons. This makes Figs.(lO,ll) symmetric and 

tends to reduce the angular dependence. Note also that the value of z determines 

the region in z which contributes most significantly to the moment integral Eq(4.33). 

Thus the large values of ]z] where the angular variation is biggest correspond to 

angles close to the beam direction which may not be observable experimentally. 

Nevertheless the conclusion for this process is that higher order effects vary signifi- 

cantly aa a function of angle. As a final illustration of this in Fig.(l3) we show r$ 

in the physical factorisation scheme. We find that $ deviates significantly from $ 

in the forward direction. 

In Table 9 we show the diagonal moments of the quantities r, t and t’ for process 

(2). Table 9 serves to document our differences with the results of ref.[25]. 

Lastly we consider process (3) in a hypothetical world without quarks. To do 

this we everywhere set 2’~ = 0, (including in the definition of the beta function 

Eq.(2.11)). Since there are now no other processes with which process (3) can mix 

we can consider it by itself. Table 10 diplays the results for the diagonal moments. 

The corrections are large and positive, but the values of qr and I]( which minimise 
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the higher order correction are of a similar order of magnitude to the values found 

for process (1). In this case there is at present no physical scheme calculated to 

sufficiently high order that we can use it to define the gluon distribution. This is 

because the gluon distribution function enters into deep inelastic scattering only at 

order czs. 

Figs.(14),(15) and (16) plot the change in t, 1’ and qr with Z. Individually t 

and t’ vary with Z but the value of qt which removes the higher order correction is 

almost independent of 2. The corrections to pure glue-glue scattering are practi- 

cally independent of angle. The contrast between Fig.(lB) and Figs.(12,13) is quite 

striking. 
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CONCLUSIONS. 

We have presented results for all 2 + 2 and 2 + 3 parton scattering processes in 

QCD. The calculations were performed with massless quarks through to the sixth 

order in the strong coupling constant. Separately the 2 + 2 and 2 -+ 3 matrix 

elements are singular in the region of soft or collinear parton emission. These 

singularities cancel when they are combined to form physical observables. We have 

only done this in a limited number of cases. 

The complexity of the calculations has led to this rather technical paper. It was 

our intention to present the results required in sufficient detail that they may be 

used for further elaboration by ourselves or by others. 

We have performed a limited analysis of one hadron inclusive scattering. This 

provides a simple check of our results and allows us to make contact with earlier 

work. For the parton processes which we considered the corrections are large and 

positive. In other words the corrections can be reduced by choosing a renormalisa- 

tion scale $’ substantially smaller than the ‘natural’ scales 2 or j$. The higher order 

corrections to inclusive cross-sections mediated by quark-quark scattering vary as a 

function of angle; the corrections to pure glue-glue scattering vary much less. The 

significance of these results for the jet cross-sections which are actually measured 

by modern detectors remains to be clarified. 

We are confident that our results will aid the understanding of the most co- 

pious class of events in high energy hadron-hadron collisions at large transverse 

momentum. 
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r 

t 

t 

Process 

1+2+3+4 E [Ml2 

qj + qk --* qj + Qk 

qj + Gk h 4’j + gk 

qj + qj + gk + qk 

[a(% 4 u)l l(4N2) 

[a(% t, 511 l(4N2) 

[a(t, 8, u)l /(4N2) 

!Zj + qj + qj + qj [a(s, t, u, + a(s, UT t, + b(s, t, u)] /(4N2) 

qj + qj + Qj + qj [a(u~ t, s, + a(u, s, t, + b(u, t, s)] /(4N2) 

Qj+Gj+9+!3 

Qj+g+qj+g 

Gj+!J+Gj+S 

!J+g+qj++j 

[c(4 4 u)l l(4N2) 

- [c(t, 8, u)1/(4(1 - f)NVI) 

- [c(t, %S)1/(4(1 - f)NV) 

[c(s, 4 u)1/(4(1 - f)2v2) 

9+9-+9+!J 14% t, 41/(4(1 - EJ2V2) 

Table 1. Results for the (2 -+ 2) matrix elements in n dimensions summed and 

averaged over colours and spins. 
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d4) (s, t, u) 2v (q$ - E) 

b(4) (s, t, u) -%(l - E) ($ + c) 

cys, t, u) g1 - E) (5 - q> (t2 + u2 - ES2) 

d4)(s,t,u) 16VN2(1 - E)~ (3 - $ - $ - 5) 

Table 2. The O(g’) approximations to the functions a, b,c and d for the (2 + 2) 

matrix elements in n dimensions. 
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Topology Statistical Factor Weight 

1 1 1 

2 2 2 

3 1 1 

4 1 1 

Total No. of Interferences 5 

FERMILAB-Pub-851152-T 

Table 3. The statistical factors and weights with which the topologies Pea), of Fig. 4 

enter in the process Qj + Qs + qj + qk at O(as3). 

Topology Statistical Factor Weight 

1 1 2 2 

2 1 4 

3 1 2 

4 1 2 

Total No. of Interferences 10 

Table 4. The statistical factors and weights with which the topologies I?(*) of Fig. 5 

enter in the process qj + gj + gj + gj at O(c$). 
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ropo1ogy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Statistical Factor 
1 

f 

1 
I 

f 

1 

1 
1 

; 

1 

1 
I 2 
1 

f 

1 

1 
1 
5 
I 
2 
1 

1 

1 

Weight 

2 

4 

2 

2 

4 

2 

2 

2 

4 

2 

1 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

42 

Table 5. The statistical factors and weights with which the topologies l?(c) of Fig. 7 

enter in the process qj + gj + g + g at O(as3). 
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Topology 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Statistical Factor 
1 
P 
1 

1 
1 2 
1 
5 
1 

i 
1 

1 
1 2 
1 

f 
1 
5 
1 

1 
1 
5 
1 

2 

I Total No. of Interferences 

Weight 

3 

6 

6 

6 

3 

6 

6 

12 

12 

12 

6 

3 

3 

6 

6 

6 

3 

3 

108 

Table 6. The statistical factors end weights with which the topologies rtd) of Fig. 9 

enter in the process g + g + g + g at O(as3). 
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Process 

1+2+3+4+5 

L’j f qk ---$ ‘?j + qk + 9 L4(p1,p2, -PS, -P4, -PS)] /(4N2) 

qj f nk ---f ‘?j + qk + 9 P(PI, -P4> -PS, ~2, -P5)] /(4N2) 

qj + qj h nk f Qk + 9 [A(PI,Ps, -PZ, -~4, -p5)] /(4N2) 

‘?j + g d qj + qk + qk - MPI, -P5, -Ps, -p4,p2)] /(4N2) 

Clj + qj + qj + qj + 9 MPl~P2, -Ps, -P4, -P5)] /(4N2) 

qj + qj + Qj + gj + 9 RPlJ -P4, -Ps,Pz, -P5)] /(4N2) 

qj+gdC7jf!lj+qj -[B(P~,-P~,-Ps,-P~,P~)]/(~(~-~)NV) 

Qj+Pj+g+g+g [C(Pl,PZ, -Ps, -Pa, -Ps)] /(4N2) 

Pj+g-+Qj+g+!J - [C(Pl, -Ps,Pa, -P4, -P5)1/(4(1 - c)NV) 

Gj+!?+gj+S+S - w-PS,Pl,PZ, -P4, -P5)1/(4(1 - c)NV) 

g f g + qj + qj + 9 [~(-pS,-p4,pl~p2~-p5)]/(4(1 - E)~V’) 

9+9+9+9+9 [WPl,PZ, -Ps, -P4, -P5)] /(4(1 - c)2V2) 

Table 7. The matrix elements squared for the physical processes averaged over 

initial colours and spins in terms of the four basic functions A, B, C, D 
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n,m f re t te 

191 54.1 38.8 36.1 20.8 

292 72.1 50.9 45.5 24.3 

3,3 82.7 56.3 53.0 26.6 

494 91.3 60.2 59.4 28.3 

595 98.8 63.4 65.1 29.7 

w3 105. 66.2 70.1 31.0 

7,7 111. 68.6 74.7 32.1 

68 117. 70.8 79.0 33.1 

99 122. 72.8 02.9 34.0 
10,lO 126. 74.7 86.6 34.9 

1’ 

11.6 
16.8 
19.6 
21.5 
23.1 
24.3 
25.4 
26.4 
27.2 
28.0 

% m rl; 
0.009 0.045 0.166 
0.014 0.067 0.235 
0.015 0.067 0.257 
0.014 0.063 0.268 
0.014 0.060 0.276 
0.013 0.056 0.279 
0.013 0.053 0.283 
0.012 0.050 0.285 
0.011 0.049 0.287 
0.011 0.045 0.288 

Table 8. Diagonal moments of the radiative corrections to the process qj + qk + 

Qj + X at O((rs3). r, t and f) w defined in Eqs.(4.29-4.31). 

n, m 
L1 
2J 

333 
434 
575 
w3 

797 
w 
999 

LO,10 

, 

~ 

*(n, 4 t(n, 4 !‘(n,m) 7r(n, 4 74~ 4 
-39.7 -7.82 -9.38 0.015 0.43 
-16.7 -6.52 -4.39 0.022 0.23 
-11.3 -5.60 -2.86 0.019 0.14 
-8.80 -4.94 -2.12 0.016 0.10 
-7.36 -4.45 -1.69 0.013 0.07 
-6.40 -4.06 -1.41 0.011 0.06 
-5.69 -3.74 -1.21 0.009 0.05 
-5.15 -3.48 -1.06 0.008 0.04 
-4.72 -3.25 -0.94 0.007 0.03 
-4.37 -3.06 -0.85 0.006 0.03 

Table 9. Diagonal moments of the radiative corrections to the process qj+qb -+ g+X 

at O(&). 



1 

n,m 
191 
w 

3,3 

434 

595 

683 

737 

83 

999 
LO,10 

+, 4 
81.1 

118. 

141. 

159. 

175. 

189. 

202. 

214. 

225. 

235. 

- 
i(n, 
56.4 

74.3 

89.4 

103. 

114. 

125. 

135. 

144. 

152. 

160. 

:‘(n, m) vrh 4 
18.8 0.013 

29.2 0.018 

34.9 0.018 

39.0 0.017 

42.3 0.016 

45.0 0.015 

47.4 0.014 

49.4 0.013 

51.3 0.012 

52.9 0.012 
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?t(n, m) 
0.050 

0.079 

0.077 

0.071 

0.068 

0.062 

0.058 

0.054 

0.052 

0.049 

1 

Table 10. Diagonal moments of the radiative corrections to the process g+g + g+X 

at O(as3) in the limit TR = 0. 



-42- FERMILAB-Pub-85/152-T 

FIGURE CAPTIONS 

1. Feynman diagrams contributing to the 2 + 2 processes in order O(g*). 

2. First radiative corrections to qj + Q + qj + qr. The notation is as follows, 

Solid line: quark or anti-quark. 

Curly line: gluon, ghost or anti-ghost. 

Dashed line: gluon, ghost or anti-ghost, quark or anti-quark. 

The identification of the curly or dashed lines as detailed above is made in all 

possible ways consistent with, 

1) the conservation of ghost and quark number at every vertex 

2) the absence of four point vertices involving ghosts or quarks. 

3. The five diagrams which are represented by diagram 1 of Fig. 2. In this 

diagram the curly line represents a gluon alone and the dotted line represents 

a ghost. 

4. The independent topologies, l? (‘1, obtained by interfering Fig. la with the five 

diagrams of Fig. 2. 

5. The additional topologies, I’cbl, obtained by interfering Fig. lb with the five 

diagrams of Fig. 2. 

6. The first radiative corrections to the process Qj + qj -+ g + g. Notation as in 

Fig. 2. 

7. The independent topologies, l?(cl, obtained by interfering the diagrams of 

Fig. lc with those of Fig. 6. 

8. Diagrams contributing to the first radiative corrections to the process g + g -+ 

g + g. The complete set of diagrams is obtained by adding diagrams obtained 

from the above by the exchanges (~1 * p3) and (~1 * ~4). Notation ss in 

Fig. 2. 

9. The independent topologies, I@), obtained by interfering the diagrams of 

Fig. Id with those of Fig. 8. 
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10. t(n, m) vs. Z = (m-n)/(n+m) for various values of L = n+m for quark-quark 

scattering. This illustrates the size and angular variation of the correction at 

the scale p2 = fig. 

11. t’(n, m) vs. z showing the size and angular variation of the p dependent part 

of the correction for quark-quark scattering. 

12. nJn,m) vs. Z. The effective scale needed to minimise the higher order cor- 

rection to quark-quark scattering ss a function of Z. 

13. n;(n,m) vs. Z. The effective scale needed to minimise the higher order cor- 

rection in the physical factorisation scheme. 

14. t(n,m) vs. Z. The size and angular variation of the correction at p* = #. for 

gluon-gluon scattering. 

15. t’(n, m) vs. 8. The size and angular variation of the ~1 dependent part of the 

correction for gluon-gluon scattering. 

16. nt(n,m) vs. Z. The effective scale needed to minimise the higher order cor- 

rection to gluon-gluon scattering as a function of 2. 
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